Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape
نویسندگان
چکیده
The finite element method (FEM) is applied to bound leading eigenvalues of the Laplace operator over polygonal domains. Compared with classical numerical methods, most of which can only give concrete eigenvalue bounds over special domains of symmetry, our proposed algorithm can provide concrete eigenvalue bounds for domains of arbitrary shape, even when the eigenfunction has a singularity. The problem of eigenvalue estimation is solved in two steps. First, we construct a computable a priori error estimation for the FEM solution of Poisson’s problem, which holds even for nonconvex domains with reentrant corners. Second, new computable lower bounds are developed for the eigenvalues. Because the interval arithmetic is implemented throughout the computation, the desired eigenvalue bounds are expected to be mathematically correct. We illustrate several computation examples, such as the cases of an L-shaped domain and a crack domain, to demonstrate the efficiency and flexibility of the proposed method.
منابع مشابه
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملA Time-Domain Method for Shape Reconstruction of a Target with Known Electrical Properties (RESEARCH NOTE)
This paper uses a method for shape reconstruction of a 2-D homogeneous object with arbitrary geometry and known electrical properties. In this method, the object is illuminated by a Gaussian pulse, modulated with sinusoidal carrier plane wave and the time domains’ footprint signal due to object presence is used for the shape reconstruction. A nonlinear feedback loop is used to minimize the diff...
متن کاملNumerical Aspects of Spectral Segmentation on Polygonal Grids
We present an implementation of the Normalized Cuts method for the solution of the image segmentation problem on polygonal grids. We show that in the presence of rounding errors the eigenvector corresponding to the k-th smallest eigenvalue of the generalized graph Laplacian is likely to contain more than k nodal domains. It follows that the Fiedler vector alone is not always suitable for graph ...
متن کاملA Sharp Upper Bound for the First Dirichlet Eigenvalue and the Growth of the Isoperimetric Constant of Convex Domains
We show that as the ratio between the first Dirichlet eigenvalues of a convex domain and of the ball with the same volume becomes large, the same must happen to the corresponding ratio of isoperimetric constants. The proof is based on the generalization to arbitrary dimensions of Pólya and Szegö’s 1951 upper bound for the first eigenvalue of the Dirichlet Laplacian on planar star-shaped domains...
متن کاملA framework of verified eigenvalue bounds for self-adjoint differential operators
For eigenvalue problems of self-adjoint differential operators, a universal framework is proposed to give explicit lower and upper bounds for the eigenvalues. In the case of the Laplacian operator, by applying Crouzeix–Raviart finite elements, an efficient algorithm is developed to bound the eigenvalues for the Laplacian defined in 1D, 2D and 3D spaces. Moreover, for nonconvex domains, for whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2013